Original Articles

Sulforaphane-N-Acetyl-Cysteine inhibited autophagy leading to apoptosis via Hsp70-mediated microtubule disruption

Yabin Hu a, b, Yan Zhou a, b, Gaoxiang Yang a, b, Yalin Wang a, b, Zhengnan Zheng a, b, Juntao Li a, b, Yuting Yan a, b, Wei Wu a, b, c, *

a Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, China

b Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, China

Institute of Brain Tumor, Beijing Institute for Brain Disorders; Capital Medical University, No. 10, Xianju Road, You An Men Wai Ave., Feng Tai District, Beijing, 100069, China

ARTICLE INFO

Keywords:
Sulforaphane metabolites
Autophagosome
Statmin-1
α-tubulin
Lung cancer

ABSTRACT

Sulforaphane-N-acetyl-cysteine (SFN-NAC) is a potential drug to inhibit human non-small cell lung cancer (NSCLC), but the underlying mechanisms are elusive. Here, we uncovered that SFN-NAC induced apoptosis via flow cytometer assay and transmission electron microscopy. Further, SFN-NAC increased LC3 II/LC3 I and the number of LC3 punctas, but Western blot showed that SFN-NAC inhibited cell autophagy in response to a co-treatment of Bafilomycin A1 and SFN-NAC. Furthermore, immunofluorescence staining and Western blot showed that SFN-NAC triggered microtubule disruption causing apoptosis via downregulating α-tubulin and phosphorylated ERK1/2-mediated Statmin-1. Besides, SFN-NAC upregulated Hsp70 via phosphorylating ERK1/2. Confocal microscopy and immunoprecipitation assay showed that SFN-NAC promoted the colocalization and interaction of Hsp70 and α-tubulin; knockdown of Hsp70 enhanced SFN-NAC-induced microtubule disruption, lowered LC3 II/LC3 I and promoted apoptosis. Interestingly, tissue microarray analysis showed that the increased expression of either α-tubulin or Hsp70 correlated to NSCLC malignant grading, indicating that microtubule and Hsp70 are two key targets for SFN-NAC. These results will give us a new insight into SFN-NAC-induced apoptosis so that we develop more efficient therapeutics to treat NSCLC.

1. Introduction

Those commonly used drugs for non-small cell lung cancer (NSCLC) might have side-effects and poor prognosis, thus it is necessary to develop low-toxicity and high-efficiency chemotherapeutics. Vegetable-derived sulforaphane (SFN) inhibited tumor progression in many cancers. However, due to a short half-life in circulation, higher working dose, unclear toxicity and drug resistance, SFN has not been used clinically yet. However, SFN might be metabolized in blood to produce sulforaphane-N-acetyl-cysteine (SFN-NAC) and sulforaphane-cysteine (SFN-Cys) [1]. SFN-NAC is the most abundant SFN metabolite in tissues and urine, and discharged completely from the animal body within 72h [2,3]. Although multiple mechanisms were found involving in SFN-induced apoptosis in a variety of cancers [4,5], whether SFN-NAC induced apoptosis in NSCLC remains unclear. Investigation of mechanisms which SFN-NAC might induce apoptosis will help us find novel molecular targets and establish efficient chemotherapies.

Recently, we reported that both SFN-NAC and SFN-Cys induced apoptosis via phosphorylated ERK1/2-mediated microtubule disruption in human prostate cancer cells [6]. As a main component of microtubule, α-tubulin plays an important role in cell motility, mitosis, intracellular trafficking, cytoskeleton remodeling and cell cycle [7]. Highly expressed α-tubulin was detected in tumor, thus α-tubulin was regarded as a biomarker for cancer grading and prognosis [8]. Microtubule disruption might result from microtubule depolymerization which was regulated by a balance of dynamics between the expressions of microtubule-stabilizing proteins and microtubule-destabilizing proteins. Similar to α-tubulin, microtubule destabilizing protein Statmin-1 is a potential anti-cancer target. Highly expressed Statmin-1 in many human cancers was thought to be correlated to tumor grading of malignancy and poor prognosis [9,10], while low expression of Statmin-1 promoted the excessive stability of microtubule though lowering depoly-
merization leading to apoptosis [11]. Besides, Statmin-1 overexpression increased radioreistance via inducing autophagy in NSCLC cells [12]. SFN might regulate macroautophagy (abbreviated as autophagy) via phosphorylated ERK1/2; inhibition of ERK1/2 activation via U0126 prevented SFN-induced LC3 II elevation [13]. Interestingly, inhibition of autophagy via Cadmium was associated with microtubule disruption in nerve cells [14]. These findings pushed us to investigate whether SFN-NAC triggered apoptosis via regulating autophagy.

Studies showed that SFN regulated autophagy in pancreatic cancer cells [15], some molecular chaperones might modulate autophagy. SFN activated heat shock response and increased proteasome activity through upregulation of Hsp27, and Hsp27 might regulate cytoskeleton activity and maintain the conformational structure and stability of the interacting proteins [16,17]. Hsp70 was highly expressed in malignant cancer cells and involved in oncogenesis and chemotherapeutic resistance [18,19]. Further, Hsp70 regulated autophagy during cell growth and differentiation, and acetylated Hsp70 inhibited caspase-dependent apoptosis and autophagic cell death in cancer cells [20]. Furthermore, overexpressed Hsp70 prevented cell death triggered by chemical drugs and played a central role in stress-induced cell death by maintaining protein homeostasis [21,22]. Knockdown of Hsp70 via siRNA increased cell sensitivity to drugs [23]. In addition, Hsp70 helped the folding of newly synthesized polypeptides, the assembly of multiple protein complexes. Therefore, Hsp70 might interact with α-tubulin to regulate cell homeostasis. Since autophagy is a way to recycle and eliminate proteins, such as mitochondria and microtubule proteins via autophagolysosomes, SFN metabolites might regulate autophagy via Hsp70 to repair or clear up damaged microtubule proteins. Numerous studies showed the opposite results that inhibition of autophagy enhanced or lowered apoptosis in a number of cancer cells [24–28]. Hence we have to know the underlying mechanisms that SFN-NAC regulates autophagy and apoptosis.

In a word, the characterization of the mechanisms that SFN-NAC inhibits cancer will help us design a potential anti-cancer chemotherapy to treat NSCLC.

2. Materials and methods

2.1. Antibodies and reagents

Specific antibodies against pERK1/2, total ERK1/2, LC3, cleaved-caspase3 (Cell Signaling Technology, USA), Statmin-1, α-tubulin (Abcam, UK), Hsp70 (Abclonal, China) were purchased. D, L-Sulfophoraphane-N-acetyl-cysteine (Santa Cruz Biotech, USA), pERK1/2 inhibitor PD98059 (Cell Signaling Technology, USA), autophagy inhibitor 3-Methyladenine (3-MA, Sigma, USA) and Bafilomycin A1 (Sellek, USA) were purchased.

2.2. Cell culture and transfection

Human NSCLC A549, SK-1, H1915 cells, normal bronchial epithelial 16HBE and BEAS-2B cells (Cell Resource Center, Peking University Medical College) were cultured in DMEM/F12, RPMI-1640 medium or DMEM with 10% fetal bovine serum (HyClone, USA). All cells were cultured in a humidified incubator in 5% CO₂ at 37°C.

To knock down Hsp70 mRNA, negative control siRNA (NC siRNA (5'-TTCTCCGAACGTGTCGACT-3') and Hsp70 siRNA (5'-CGACGAGA-CAAGCCCAAG-3') were designed [29]. Cells were plated in 6-well plates (diameter, 35mm) at a density of 1 x 10⁶/well and cultured for 24h. Then the cells were transfected with the Hsp70 siRNA or NC siRNA (30 pmol/well) by Lipofectamine™ RNAiMAX (Invitrogen, USA) when cells reach approximately 80% confluency.

2.3. Morphology assay

Cells were seeded at a density of 1x10⁶ cells/well in 6-well plates and incubated overnight. For treatment with SFN-NAC, fresh medium-containing 10% fetal bovine serum was added, and then cells were treated with different concentrations of SFN-NAC (0, 10, 20, 30, 40 and 50μM) for 24h. The morphological images of the cells were observed by phase contrast microscope at ×100 magnification (Leica, Germany) and photographed.

2.4. Cell viability assay

Cells were seeded at a density of 1x10⁶ cells/well in 96-well plates and incubated overnight. Then cells were treated with different concentrations of SFN-NAC (0, 10, 20, 30, 40 and 50μM) for 24h. The method is given in Promega MTS instruction (Promega, USA).

2.5. Apoptosis assay

Cell apoptosis was measured via Annexin V-FITC apoptosis assay kit (GenStar, China). After treatment with SFN-NAC, the cells were harvested and washed twice with ice-cold phosphate-buffered saline (PBS), and the cells were resuspended to a concentration of 1 x 10⁶ cells/mL by binding buffer. Then 5μL Annexin V-FITC and 10μL PI were added to 100μL cell suspension, and the reaction was incubated for 5 min at room temperature in the dark. Apoptotic cells were detected via a flow cytometer.

2.6. Soluble and insoluble protein

The treated cells were washed with ice-cold PBS and lysed on ice by Nondenaturing Lysis Buffer (APPLYGEN, China) supplemented with protease inhibitors cocktail (Roche, Switzerland). The cell lysates were centrifuged at 12,000 rpm for 15 min at 4°C. The supernatant was defined as the soluble protein and the pellet which was defined as the insoluble protein, was washed twice with ice-cold PBS and dissolved in 95°C 2% SDS for 30 min.

2.7. Western blot

Cells were lysed by RIPA buffer (APPLYGEN, China) supplemented with protease inhibitors cocktail. Whole-cell lysates were quantified by the BCA Protein Assay Kit (APPLYGEN, China). Equal quantities of protein (30μg) from each sample were separated by 10% or 15% SDS-PAGE; the whole procedures will be done by the protocol we published [30].

2.8. Coimmunoprecipitation

The treated cells were washed with ice-cold PBS, then lysed on ice via Nondenaturing Lysis Buffer supplemented with protease inhibitors cocktail. The monoclonal anti-α-tubulin or anti-Hsp70 were added to the protein lysates, incubated overnight at 4°C. The complexes were pulled down with protein A/G agarose for 3h and the proteins were isolated by centrifuging and boiling for 5 min. Western blot was used to recognize the conjugated proteins.

2.9. Immunofluorescence and confocal microscopy

Cells were treated with 30μM SFN-NAC for 24h and fixed with 1% paraformaldehyde for 15 min and permeabilized with methanol -20 for 10 min at room temperature. After blocking, the cells were incubated
with the corresponding primary antibodies and further the fluorescence-labeled secondary antibody. The cells were stained with DAPI (Zsycl-bio, China). Fluorescence images were collected under a laser scanning confocal microscope (LSCM) (Olympus FV1000, Japan).

2.10. Transmission electron microscopy (TEM)

Cells were harvested and fixed with 3% glutaraldehyde at 4°C for 2h. After washing with PBS for three times, the samples were fixed in 1% osmium tetroxide for 1h. Then samples were dehydrated through a graded ethanol series and embedded in a 1:1 mixture of acetone and Epon812 resin for 30 min. The samples were then infiltrated 2h in Epon812. Ultrathin sections were cut with a knife and placed on 200-mesh copper grids and stained with Uranium acetate for 30min and Lead nitrate for 20min. The sections were then examined and photographed with a transmission electron microscope (JEM-1400Plus, Japan).

2.11. Immunohistochemistry

Human lung adenocarcinoma and lung squamous carcinoma tissue arrays containing 150 dotted tumor and adjacent tissues from 75 patients with different pathologic grading grades were purchased from Shanghai Biochip (Shanghai, China). The immunohistochemistry stain was done with human specific anti-Hsp70 or anti-α-tubulin combined with the UltraSensitive™ S-P detection kit (Maixin, Fuzhou, China). The protocol derived from the recently published paper [6].

2.12. Statistical analysis

All data were expressed as mean ± standard deviation (SD) from 3 independent experiments. Paired data were evaluated by Mann Whitney test. P ≤0.05 was considered statistically significant. Multiple independent data were evaluated by Kruskal-Wallis test. P ≤0.01 was considered statistically significant. The statistical analyses were done by SPSS version 19.0.

3. Results

3.1. SFN-NAC inhibited cell proliferation and induced apoptosis in NSCLC cells

Cells were treated with SFN-NAC at the indicated concentrations for 24h. Results showed that SFN-NAC induced morphological alterations in both A549 and SK-1 cells (Fig. 1A). SFN-NAC-treated cells got shrunk, round and more transparent with short processes after treated with 30 μM SFN-NAC. In addition, cell viability was inhibited by SFN-NAC in a concentration-dependent manner. In contrast, human normal

Fig. 1. SFN-NAC induced cell morphological alterations, inhibited cell proliferation and caused apoptosis. A: Both A549 and SK-1 cells were treated with SFN-NAC at the indicated concentrations for 24h. Then, cell morphological images were observed by Leica DMIRB microscope (at×100 magnification). B: A549, SK-1, BEAS-2B and 16HBE cells were treated with SFN-NAC at the indicated concentrations for 24h. Then, cell viability was determined by Cell Proliferation Assay Kit and presented as the percentages versus the control. C: Both A549 and SK-1 cells were treated with 30 μM SFN-NAC for 24h, then the cells were harvested and the percentage of cell apoptosis was analyzed by flow cytometer via Annexin V-FITC/PI Apoptosis Detection Kit. D: After induction with 30 μM SFN-NAC, both A549 and SK-1 cells were harvested and fixed, the cells pellets were cut into thin slices and stained with Uranium acetate and Lead nitrate, and finally were viewed with a TEM. Black arrows indicate nucleic fragmentation, white arrows indicate nucleic condensation, black arrowheads indicate sporadic vacuoles and double black arrows indicate apoptotic bodies. Scale bars: (a-c: 5μm), (d-f: 2μm). E: Western blot analysis of cleaved-caspase3 expression in A549 and SK-1 cells treated with SFN-NAC (c-caspase3: cleaved-caspase3). *, P ≤0.05, SFN-NAC only cells versus the control cells. Data were shown as means ± SD (n = 3).
bronchial epithelial BEAS-2B and 16HBE cells were significantly less sensitive to SFN-NAC (Fig. 1B). Cell flow cytometer assay showed that SFN-NAC increased apoptosis in both cancer cell lines (Fig. 1C). TEM observation showed that SFN-NAC-treated cells displayed apoptotic phenotypes, such as nuclear fragmentation, nucleic condensation, sporadic vacuoles and apoptotic bodies (Fig. 1D). More, Western blot showed that SFN-NAC elevated the level of cleaved-caspase3 in both cancer cell lines (Fig. 1E). The concentration of 30 μM, as IC50, was set as a concentration to investigate the signaling, the treatment time of 24h was the optimal time to consistently activate ERK1/2.

3.2. The upregulation of Hsp70 resulted from the phosphorylated ERK1/2

Cells were treated with SFN-NAC at the indicated concentrations and times. These results showed that SFN-NAC upregulated the expression of pERK1/2 in either a time-dependent manner (Fig. 2A) or a concentration-dependent manner (Fig. 2B). More, SFN-NAC also elevated the level of Hsp70 significantly (Fig. 2C and D). To determine the relationship between ERK1/2 phosphorylation and Hsp70 upregulation, a specific inhibitor of phosphorylated ERK1/2, PD98059 (25 μM) was applied. PD98059 reversed the upregulation of phosphorylated ERK1/2 (Fig. 2E), indicating that SFN-NAC-induced pERK1/2 upregulation resulted in the upregulation of Hsp70.

3.3. High expression of Hsp70 was detected in NSCLC tissues

The expression of Hsp70 was tested via immunohistochemistry (IHC) staining on tissue arrays of human lung adenocarcinoma and lung squamous carcinoma samples. Hsp70 intensity in tumor tissues was raised as the pathological grading increased, but the density in the adjacent tissues was significantly lower (Fig. 2F). In addition, the H-
scores of tumor tissues by IHC staining corresponding to Hsp70 were higher than those of adjacent tissues (Fig. 2G).

The correlation of Hsp70 expression to pathological grading of NSCLC was analyzed by calculating the H-score (Table 1). The results indicated that the level of Hsp70 expression seemed to be positively correlated with the pathological grading of the lung adenocarcinoma or squamous carcinoma (Fig. 2H). No correlation was detected between highly expressed Hsp70 and other clinical parameters.

These findings suggested that Hsp70 overexpression may be required for lung tumorigenesis or for the maintenance of its malignant phenotypes.

3.4. SFN-NAC downregulated α-tubulin resulting in microtubule disruption

Herein we found SFN-NAC dramatically downregulated the expression of α-tubulin and in a time and concentration-dependent manner (Fig. 3A and B). In addition, when these cells were treated with SFN-NAC for 24h, we observed a decrease in the amount of α-tubulin in both soluble and insoluble fractions compared with the untreated control cells (Fig. 3C). These indicated that SFN-NAC depolymerized microtubule. Further, the results of immunofluorescence also showed that SFN-NAC induced microtubule disorganization and aggregation in both A549 and SK-1 cells (Fig. 3D). These implied that SFN-NAC disrupted microtubules in both cell lines. Similar to the results of Hsp70 test in tissue arrays of human lung adenocarcinoma and lung squamous carcinoma samples, α-tubulin intensity was raised as the pathological grading increased, while those in the adjacent tissues were not significantly stained (Fig. 3E). In addition, the H-scores of tumor tissues by IHC staining with α-tubulin were higher than those of adjacent tissues (Fig. 3F).

The correlation of α-tubulin expression to pathological grading of NSCLC was also calculated by H-score (Table 2). The results indicated that the level of α-tubulin expression seemed to be positively correlated with the pathological grading of the lung adenocarcinoma and squamous carcinoma samples (Fig. 3G). No correlation was detected between highly expressed α-tubulin and gender, age and clinical staging.

These findings suggested that α-tubulin might serve as a biomarker for the deterioration of lung tumors.

3.5. SFN-NAC downregulated the expression of Stathmin-1 and promoted the interaction between Hsp70 and α-tubulin

Considering the undetectable expression of Stathmin-1 in SK-1 cells, we used a human lung squamous carcinoma cell line H1915 to be a substitute. Here, SFN-NAC downregulated the expression of Stathmin-1 (Fig. 4A and B) and this effect was reversed by PD98059 (Fig. 4C). However, SFN-NAC-induced downregulation of Stathmin-1 is significantly enhanced by Hsp70 silencing (Fig. 4D). These data indicated that pERK1/2 contributed to downregulation of Stathmin-1, while Hsp70 inhibited SFN-NAC-induced downregulation of Stathmin-1. Further, knockdown of Hsp70 resulted in a lower expression of α-tubulin (Fig. 4E). Furthermore, we also found that SFN-NAC enhanced the interaction between Hsp70 and α-tubulin (Fig. 4F). The results via immunofluorescence and confocal microscopy also showed that SFN-NAC promoted the colocalization of Hsp70 and α-tubulin (Fig. 4G). These data indicated that Hsp70 resisted the SFN-NAC-induced downregulation of α-tubulin and phosphorylated ERK1/2-mediated Stathmin-1, suggesting that Hsp70 is a microtubule protector.

3.6. SFN-NAC inhibited autophagy leading to apoptosis

Herein we observed autophagic features, such as autophagosome and autophagolysosome in SFN-NAC-treated cells (Fig. 5A). Moreover, SFN-NAC increased the number of LC3 punctas (Fig. 5B) and induced a decrease in LC3 I and an increase in LC3 II (Fig. 5C and D). To determine how SFN-NAC regulates autophagy, Bafilomycin A1 (100nM) was used. Results showed that SFN-NAC did not change LC3 II level after combined with Bafilomycin A1 (Fig. 5E). These results indicated that SFN-NAC inhibited autophagy. Another specific inhibitor of autophagy 3-MA (2.5mM) was used in the SFN-NAC treated cells. Results showed that inhibition of autophagy increased SFN-NAC-induced apoptosis (Fig. 5F), indicating that autophagy protected NSCLC cells from SFN-NAC-induced apoptosis.

3.7. Hsp70 repressed apoptosis via increasing LC3 II/LC3 I

To determine how Hsp70 links to SFN-NAC-induced microtubule disruption, autophagy inhibition and apoptosis, Hsp70 siRNA was used to knock down its expression. Results showed that knockdown of

Table 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>Lung squamous carcinoma</th>
<th>Lung adenocarcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All patients</td>
<td>Low</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>71</td>
<td>31</td>
</tr>
<tr>
<td>Female</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 60</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>> 60</td>
<td>40</td>
<td>19</td>
</tr>
<tr>
<td>Differentiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>II</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>III</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>Staging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>IB</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>IIA</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>IIB</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>IIIA</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>IIIB</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (Score 0–4), High (Score 5–12).
* p < 0.05 was defined as statistically significant.
Hsp70 resulted in a significantly increased apoptosis (Fig. 6A), and a significantly increased microtubule disruption in response to SFN-NAC (Fig. 6B). In particular, knockdown of Hsp70 significantly decreased LC3 II/LC3 I in response to SFN-NAC (Fig. 6C). These data indicated that Hsp70 lowered SFN-NAC-induced apoptosis via increasing LC3 II/LC3 I. Collectively, we demonstrated that SFN-NAC-induced microtubule disruption contributed to autophagic inhibition and apoptosis. Cell apoptosis was regulated via Hsp70-mediated autophagy which is a feedback of SFN-NAC treated NSCLC cells (Fig. 6D).

4. Discussion

We previously unveiled some novel mechanisms regarding SFN metabolites-induced tumor suppression in a couple of cancers [31,32]. Here we further discovered that SFN-NAC induced ERK1/2 phosphorylation and upregulated Hsp70 leading to Hsp70-mediated microtubule disruption, autophagy inhibition and apoptosis.

SFN can cause apoptosis and inhibit invasion by binding to its target proteins. Macrophage migration inhibitory factor (MIF) was demonstrated as a SFN-binding target. SFN covalently binding to MIF may constitute a novel anti-cancer mechanism via inducing apoptosis [33]. However, more studies showed that α-tubulin was the major binding target for SFN [34,35]. SFN was demonstrated to bind to α-tubulin to degrade α-tubulin causing apoptosis [36]. These results are consistent with the present findings. More studies in our and the other laboratories showed that SFN and its metabolites activated caspase3 resulting in α-tubulin degradation, aggregation and apoptotic phenotypes [30]. Degradation of α-tubulin might lead to cytoskeletal disassembly, cell morphological alteration, such as the formation and release of apoptotic bodies or vacuoles [37]. Therefore, SFN metabolites might induce α-tubulin/associated protein misfolding, degradation and aggregation leading to disequilibrium of microtubule dynamics. Studies showed that SFN treatment caused microtubule depolymerization and apoptosis in human lung cancer A549 cells [34]. Hence, the disruption of microtubule and the dysfunction of the associated proteins might be a key to cause cell death. Through tissue microarray assay, we demonstrated that increasing expression of α-tubulin contributed to cancer progression and grading of malignancy. Apparently, α-tubulin/associated proteins were the key therapeutic targets of SFN metabolites.
Table 2
Correlation of α-tubulin expression to clinicopathological characteristics of lung cancer patients.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Lung squamous carcinoma</th>
<th></th>
<th>Lung adenocarcinoma</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>All patients</td>
<td>Low</td>
<td>High</td>
<td>P value</td>
</tr>
<tr>
<td>Male</td>
<td>67</td>
<td>16</td>
<td>51</td>
<td>0.178</td>
</tr>
<tr>
<td>Female</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>< = 60</td>
<td>33</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>>60</td>
<td>38</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>Differentiation</td>
<td>I</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>42</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>23</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Staging</td>
<td>IA</td>
<td>9</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>IIA</td>
<td>13</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>IIB</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>IIIA</td>
<td>20</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>IIIB</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Low (Score 0–4), High (Score 5–12).
a p < 0.05 was defined as statistically significant.

Studies showed that ERK1/2-mediated Stathmin-1 phosphorylation plays an important role in the microtubule reorganization [38]. More, p38 activation promoted microtubule disruption by phosphorylating the microtubule-associated protein 4 (MAP4) and dephosphorylating Stathmin-1 [39]. Hereby we found that SFN-NAC downregulated Stathmin-1 via pERK1/2 and the upregulated Hsp70 prevented the downregulation of Stathmin-1. These results showed that Stathmin-1 either sequestered tubulin dimers or stimulated microtubule catastrophes leading to promotion of microtubule disassembly. Therefore, these results that SFN-NAC downregulated Stathmin-1 might contribute to microtubule disassembly. Minor change of microtubule dynamics is able to affect the cell cycle leading to apoptosis, the concentration of free tubulin heterodimers is also crucial for microtubule assembly compared with microtubule-associated protein phosphorylation [40]. We determined that SFN-NAC induced degradation of soluble or insoluble α-tubulin, which might influence microtubule treadmilling and shortening leading to microtubule disruption. Imbalance of microtuble dynamics might cause cell apoptosis and impede autophagy by inhibiting autophagosome-lysosome fusion [41]. Coincidentally, here we found that SFN-NAC increased LC3 II/LC3 I and the number of LC3 punctas, but we are not sure whether SFN-NAC inhibited autophagosome-lysosome fusion. Likewise, studies showed that SFN regulated autophagy was associated with upregulation and recruitment to autophagosomes of microtubule-associated protein 1 light chain 3 (LC3), which was proved to link autophagosome to lysosome [42,43]. Attenuation of LC3 via 3-MA accelerated apoptosis [44]. Therefore, autophagy might be a repressor of microtubule dysfunction via recycling degraded components of microtubules.

Hsp70 regulated autophagy and the dynamics of microtubule via interacting with microtubule associated proteins. In the present study, Hsp70 interacts with unfolded and aggregated proteins, such as degraded α-tubulin to repair damaged proteins, refold unfolded proteins and reduce microtubule protein aggregation. More, Hsp70 was reported to promote the stabilization of lysosome leading to autophagy and cancer cell survival [45], and inhibition of Hsp70 caused disruption of autophagy as it induced aberrant aggregation and oligomerization of the autophagic scaffold protein p62/SQSTM1 [46]. Additionally, knockdown of Stathmin-1 inhibited basal and rapamycin-induced autophagy [47]. Similarly, we also found knockdown of Hsp70 enhanced SFN-NAC-induced downregulation of Stathmin-1 and reduced autophagy in response to SFN-NAC. These results demonstrated that Hsp70-mediated autophagy might inhibit apoptosis resulting from microtubule disruption. Interestingly, inhibition of autophagy by 3-MA increased apoptosis, thus Hsp70 upregulation and Hsp70-mediated autophagy might be a protective response of cells to resist apoptosis. Hsp70 inhibited apoptosis and its high expression in tumors was associated with poor prognosis and higher resistance to anticancer treatment, which matched the present results in the tissue microarray assay [18,19]. Since Hsp70 represses apoptosis through inhibition of the both intrinsic and extrinsic apoptotic pathways and depletion of Hsp70 with siRNA promoted cell death and sensitized malignant cells to chemotherapmy, we believed that Hsp70 might be a key target for cancer therapy [48,49].

Taken together, we uncovered a brand-new mechanism that SFN-NAC induced apoptosis via microtubule disruption. These results might help us evaluate the anti-cancer potential of SFN-NAC to establish an efficient anti-cancer chemotherapy.

Author contributions

W. W. conceived, designed and supervised the entire project. W. W., Y.B. H. and Y. Z. developed the methodology. Y. Z., G. X. Y. and Y. L. W. acquired the data. Y. Z., G. X. Y., Y. B. H. and Y. L. W. analyzed and interpreted the data (e.g., statistical analysis and computational analysis). W. W., Y. B. H. and Y. Z. wrote, revised the manuscript. Y. L. W., Z. N. Z., J. T. L., and Y. T. Y. provided administrative and technical support (i.e., organizing data and constructing databases).

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Conflicts of interest statement

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Acknowledgments

Thank the National Natural Science Foundation of China (grant no. 81272843 and 81601993) for supporting this study.
Fig. 4. SFN-NAC downregulated the expression of Stathmin-1 and promoted the interaction between α-tubulin and Hsp70. A-B: Western blot analysis of Stathmin-1 expression in both A549 and SK-1 cells treated with SFN-NAC at the indicated time phases (A) or at the indicated concentrations (B). C: Both A549 and SK-1 cells were pretreated with PD98059 (25 μM) for 30 min, then treated with SFN-NAC (30 μM) for 24 h. The expressions of Stathmin-1 and pERK1/2 were analyzed by Western blot. D: Both A549 and H1915 cells were transfected with NC siRNA or Hsp70 siRNA. After transfection for 48 h, the cells were treated with SFN-NAC for 24 h. Then the cells lysates were harvested and the expression of Hsp70 and Stathmin-1 was analyzed by Western blot. E: Western blot analysis of α-tubulin and Hsp70 expression in both A549 and SK-1 cells transfected with NC siRNA or Hsp70 siRNA. F: After induction with 30 μM SFN-NAC for 24 h, coimmunoprecipitation was employed to detect the interaction between α-tubulin and Hsp70 in both A549 and SK-1 cells. G: Immunofluorescence and confocal microscopy were employed to observe the colocalization of α-tubulin and Hsp70 in both A549 and SK-1 cells. Scale bar: 25 μm. Data were shown as means ± SD (n ≥ 3). *, P ≤ 0.01.
Fig. 5. SFN-NAC inhibited autophagy increasing apoptosis. A: Observation via TEM showed the autophagosome and autophagolysosome in both A549 and SK-1 cells treated with the SFN-NAC (30 μM). Arrows indicate autophagosome, arrowheads indicate autophagolysosome. Scale bar: (a-b, d-e: 2 μm), (c: 1 μm). B: The immunofluorescence and confocal microscopy data showed that the SFN-NAC increased LC3 puncta in both A549 and SK-1 cells, indicating the formation of autophagosomes. Scale bar: 25 μm. C-D: Western blot analysis of LC3 I and LC3 II expression in A549 and SK-1 cells treated with SFN-NAC at the indicated time phases (C) or at the indicated concentrations (D). The relative ratio of LC3 II/LC3 I was calculated via the gray scale analysis. E: A549 and SK-1 cells co-treated with Baf A1 (100 nM) and SFN-NAC (30 μM) for 24 h, the expression of LC3 I and LC3 II was determined by Western blot. F: A549 cells and SK-1 cells were pretreated with 2.5 mM 3-MA, and then SFN-NAC was added into the cell medium after 2 h. After incubation for 24 h, the cells were harvested and the apoptosis cell number was determined by flow cytometer. (Baf A1: Bafilomycin A1) Data were shown as means ± SD (n ≥ 3). *, P ≤ 0.01.
Fig. 6. Hsp70 played a central role in the autophagy-mediated apoptosis. A: Both A549 cells and H1915 cells were transfected with NC siRNA or Hsp70 siRNA, after transfection for 48 h, the apoptosis cell number was determined by flow cytometer. B: Both A549 and H1915 cells were transfected with NC siRNA or Hsp70 siRNA. After transfection for 48 h, the cells were treated with SFN-NAC for 24 h. The structure of microtubule was observed under an LSM. C: Both A549 and H1915 cells were transfected with NC siRNA or Hsp70 siRNA, and treated with SFN-NAC (30 μM) for 24 h, the expression of LCI and LCI II was determined by Western blot. D: A possible schematic of the involved signal pathways that SFN-NAC induced disequilibrium of microtubule dynamic leading to apoptosis and autophagy inhibition in NSCLC cells. SFN-NAC downregulated the expression of α-tubulin and Stathmin-1 to a disrupted microtubule and ultimately induced apoptosis, and upregulated Hsp70 via increasing PERK/2 promoted autophagic phenotype and inhibited apoptosis. Data were shown as means ± SD (n ≥ 3), *P < 0.01.

References

